Stability and eigenvalue estimates of linear Weingarten hypersurfaces in a sphere

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Weingarten hypersurfaces in a unit sphere

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

متن کامل

linear weingarten hypersurfaces in a unit sphere

in this paper, by modifying cheng-yau$'$s technique to complete hypersurfaces in $s^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [h. li, hypersurfaces with constant scalar curvature in space forms, {em math. ann.} {305} (1996), 665--672].

متن کامل

Curvature Estimates for Weingarten Hypersurfaces in Riemannian Manifolds

We prove curvature estimates for general curvature functions. As an application we show the existence of closed, strictly convex hypersurfaces with prescribed curvature F , where the defining cone of F is Γ+. F is only assumed to be monotone, symmetric, homogeneous of degree 1, concave and of class C, m ≥ 4.

متن کامل

First stability eigenvalue characterization of Clifford hypersurfaces

ABSTRACT : The stability operator of a compact oriented minimal hypersurface Mn−1 ⊂ S is given by J = −∆ − ‖A‖ − (n − 1), where ‖A‖ is the norm of the second fundamental form. Let λ1 be the first eigenvalue of J and define β = −λ1 − 2(n − 1). In [S] Simons proved that β ≥ 0 for any non-equatorial minimal hypersurface M ⊂ S. In this paper we will show that β = 0 only for Clifford hypersurfaces. ...

متن کامل

Closed Weingarten Hypersurfaces in Semi-riemannian Manifolds

The existence of closed hypersurfaces of prescribed curvature in semi-riemannian manifolds is proved provided there are barriers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2013

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2012.08.003